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Abstract

Multilayered Feed-Forward Networks were employed to model on halogen-exchange fluorination reactions and predict the aryl fluoride

product yields.
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1. Introduction

Fluoronitroaromatics are useful as intermediates in the syn-
thesis of agrochemicals and pharmaceuticals. Among various
synthetic methods, the halogen-exchange fluorination tech-
nique is one of the most important procedures for the prepa-
ration of fluoronitroaromatics. However, the yield of desired
aryl fluoride varies greatly with the chloronitroaromatic
employed. The combined effect of electronic and steric fac-
tors [ 1], as well as solvent and reaction temperature, made
it difficult to predict yields. Artificial Neural Networks
(ANN), having characteristic ability to process information,
have been developing quickly during the past 20 years. We
find it is possible to model the reaction conditions and predict
yields by means of ANN.

2. ANN input pattern

To be suitable for ANN computing, the factors that affect
halogen-exchange fluorination reaction need to be repre-
sented in a numeric way. In our work, a ten-dimensional
vector was used as the ANN input signal, and a real number
output represented the yield of the desired product. Table 1
lists the 16 compounds used for ANN training and the two
for ANN model testing. It shows how to turn reactant and
reaction conditions into the input signals.
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3. Multilayered feed-forward (MLF) network

The ANN employed is a MLF network [2] that consists
of 10 nodes in the input layer, 8 in the hidden layer, and 1 in
the output layer. The network structure is illustrated by
Fig. 1.

Each node in the network contains three functions:

input function =Y Wil t0;
k

1
processing function a;= H—(—)‘_)'
expl—a;y

output function 0,=a;

where r;, i; and o, are inputs, total input and output of node j
respectively. The parameters wy, 6; and A; are weight con-
necting nodes j and k, threshold and temperature coefficient,
respectively. These three kinds of ANN parameters are deter-

mined through ANN training [3].

4. Model building

With 16 samples and error back propagation (BP) algo-
rithm [4], the MLF network was trained by updating the
network parameters, which were initialized randomly
between — I and 1. Once the average absolute error between
the target (yield reported [5]) and network output (yield
computed) decreased below 0.003, the network parameters
were settled. In this way, models were set up. Table 2 lists
both the network outputs computed by one of the MLF net-
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Table i
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Compounds and their input patterns (-NO, as reference groups )

Pattern Substituted Temperature Solvent” Number  Position Number  Number Number  Pos. of Number Number

no. CcHsNO,* (°C) of NO, of other of 0-Cl of p-Cl of m-Cl replaced of of Cl

sample NO," c replaced  adjacent

Cl to

replaced
Cl

l 24-Cly- 170 3 1 0 1 1 0 2 2 0

2 2-Cl- 185 2 1 0 | 0 0 0 i 0

3 4-C1,3-NO, 100 2 2 1 1 1 0 2 1 0

4 2,3-Cly~ 150 1 1 0 1 0 1 0 1 1

5 4-Cl- 240 3 1 0 0 1 0 1 1 0

6 4-C1,3-NO, 100 1 2 1 1 1 0 2 1 0

7 4-C1,3-NO, 140 4 2 1 1 1 0 2 1 0

8 2-Cl- 170 1 1 0 1 0 0 0 1 0

9 2-Cl- 230 3 | 0 1 0 0 0 1 0

10 4-C1,3-NO, 220 0 2 1 1 1 0 2 1 0

11 3.4,5-Cly- 150 1 1 0 0 1 2 1 1 2

12 24-Cl~ 180 2 1 0 1 1 0 2 2 0

13 2,3,4-Cly— 190 2 1 0 1 1 1 2 2 2

14 4-C1,3-NO, 150 I 2 1 1 1 0 2 1 0

15 4-Cl- 190 2 1 0 0 1 0 | 1 0

16 2,4-Cl,.5- 180 0 2 1 2 2 0 2 2 0

NO,

Model test

17 2,5-Cl— 190 2 1 0 1 0 1 0 |

18 3.4-Cl- 190 2 1 0 0 1 1 | 1 1

*Group replaced by F~ is set in italic and bold type.

"0: no solvent; 1: DMF; 2: DMSO; 3: DMSO,; 4; (CH,CH,CN),.

0: no other NO,; 1: meta-NO,.

40: ortho-Cl; 1: para-Cl; 2: both O and 1.

Table 2

Target and network outputs of the samples

Pattern no.* 1 2 3 4 5 6 7 8 9 10 I 12 13 14 15 16

Target 69.5 61.0 78.0 53.0 900 77.0 81.0 400 60.0 68.0 83.0 68.0 23.0 770 80.0 87.0

output (%)
Network 69.4 60.9 78.4 52.8
output (%)

89.7 78.1 79.8 39.7 60.4 67.0 83.0 68.1 230 77.9 80.5 85.7

“Corresponding to that in .

Target output (i.e., yield reported) is based on the complete conversion. Three significant figures are given for the network outputs.

output layer

hidden layer

input layer

Fig. 1. Network structure.

works (models) and the target outputs for the samples. As
can be seen from Table 2, the outputs of the MLF network
coincide with the target outputs to a high degree.

5. Predicting method
In principle, the network is ready to make prediction once

it is set up. The problem is that the parameters of a trained
network are not uniquely determined even if the same average
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Table 3
Predictions made by MLF networks with different parameters
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Network No. Training time (min) Error* Yield predicted (%)
17° 18°
1 6 0.0019 66.7 80.0
2 8 0.0038 424 80.4
3 9 0.0034 423 36.1
4 15 0.0044 51.8 83.2
5 12 0.0047 58.2 83.0
6 14 0.0049 40.5 83.6
7 10 0.0042 58.2 81.8
8 8 0.0024 56.1 84.5
9 16 0.0046 74.5 83.6
10 14 0.0042 61.1 87.9
i1 20 0.0047 67.8 83.2
12 19 0.0049 68.8 85.8
13 14 0.0044 63.1 82.3
14 9 0.0040 536 88.0
15 8 0.0038 23.1 48.6
16 10 0.0043 553 93.0
17 5 0.0039 56.2 825
Mean 5534322 79.3+433
Mean omitting Nos. 3 and 15 583+17.8 84.0+9.00
Yield reported [5] 58.0 84.0
“Average absolute error of the network output for samples.
PPattern no. corresponding to that in .
Table 4
Experimental results of replacement of aromatic-Cl by -F
Pattern no. Reactant® substituted Solvent Reaction time Temp. (°C)  Dried KF Conversion Yield of fluoro Mean (%)
C.HsNO, (hr) (equivalent) (%) analog (%)
17 2,5-Cly- DMSO 3 190 1.5 98.2 52.1,48.6 50.3,1.8
18 3,4-Cl,— DMSO 1 190 1.5 99.0 75.2,78.1 76.6, 1.5

*Group replaced is set in italic and bold type.

absolute error is reached becanse network training is arandom
process. Naturally, the predictions would vary with networks
having the same structure but different parameters. It is
important to know the variability of the predictions. For this
purpose, two halogen-exchange fluorination reactions were
modeled by a number of networks trained from different
initial parameters. The results are shown in Table 3. We can
see that most of the predictions, though distributive, are
around 55% for pattern 17 and 79% for pattern 18. It is
suggested that the average value be used as the final
prediction.

6. Experiment comparison

Two halogen-exchange reactions were carried out. The
reaction conditions and results are shown in Table 4.

Comparing the results with those predicted in Table 3, we
can see that the experimental results are 9% lower for pattern
17 and 3% for 18. These facts suggest that the predictions

made by the MLF networks are in reasonable accord with the
experiment.

7. Discussion

If some of the networks in Table 3 are omitted on a statis-
tical base (i.e., more than a required number of standard
deviation for 17 results), ¢.g., 3 and 15, then the average yield
increases to 58.3% and 84.0% which is the ‘yield reported’
column. In this way, the prediction quality would be
improved.

8. Conclusion

By using a set of discrete and continuous numeric data as
inputs that contain information on reactant structure and other
reaction conditions, the trained MLF networks (models) can
model halogen-exchange fluorination reactions and predict
yields with ease and quickness.
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